1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
//! Contains implementation of a span tree
use crate::data_structure::{
    graph_dcel::GraphDCEL,
    link_graph::{LinkDart, LinkFace, LinkGraphIter, LinkVertex},
};
use std::collections::{HashMap, HashSet, VecDeque};

/// The structure containing the span tree (downwards from root to leaves and upwards from leaf to root)
pub struct Span<T> {
    /// Root of the tree
    pub root: T,
    /// Maps a node to its children
    pub downwards: HashMap<T, HashSet<T>>,
    /// Maps a node to its parents
    pub upwards: HashMap<T, T>,
}

impl Span<LinkVertex> {
    /// Returns a span tree beginning with root
    pub fn compute(
        g: &impl GraphDCEL<
            LinkVertex,
            LinkDart,
            LinkFace,
            LinkGraphIter<LinkVertex>,
            LinkGraphIter<LinkDart>,
            LinkGraphIter<LinkFace>,
        >,
        root: LinkVertex,
    ) -> Self {
        assert!(g.get_vertexes().count() > 1);
        let mut queue = VecDeque::new();
        let mut upwards = HashMap::new();
        let mut downwards = HashMap::new();
        let mut visited = HashSet::new();
        downwards.insert(root.clone(), HashSet::new());
        queue.push_back(root.clone());

        while !queue.is_empty() {
            let u = queue.pop_front().unwrap();
            visited.insert(u.clone());
            for n in g.neighbors(&u) {
                if visited.insert(n.clone()) {
                    queue.push_back(n.clone());
                    upwards.insert(n.clone(), u.clone());
                    if downwards.get(&u).is_none() {
                        downwards.insert(u.clone(), HashSet::new());
                    }
                    downwards.get_mut(&u).unwrap().insert(n);
                }
            }
        }
        Span {
            root,
            downwards,
            upwards,
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::algorithm::spantree::Span;
    use crate::data_structure::graph_dcel::GraphDCEL;
    use crate::data_structure::link_graph::LinkGraph;
    use crate::embedding::{index::Embedding, maximal_planar::index::MaximalPlanar};
    use crate::utils::convert::UndirectedGraph;
    use petgraph::stable_graph::StableGraph;
    use std::collections::HashMap;

    #[test]
    #[should_panic]
    fn single_vertex() {
        let mut lg = LinkGraph::new();
        let lv1 = lg.new_vertex();

        let edges = Span::compute(&lg, lv1).upwards;

        println!("[RESULT]: {:?}", edges);
        assert_eq!(edges, HashMap::new());
    }

    #[test]
    fn single_edge() {
        let mut lg = LinkGraph::new();
        let lv1 = lg.new_vertex();
        let lv2 = lg.new_vertex();

        let ld1 = lg.new_dart(lv1.clone(), lv2.clone(), None, None, None, None);
        let lf = lg.new_face(ld1.clone());
        lg.new_dart(
            lv2.clone(),
            lv1.clone(),
            Some(ld1.clone()),
            Some(ld1.clone()),
            Some(ld1),
            Some(lf),
        );

        let edges = Span::compute(&lg, lv1.clone()).upwards;

        println!("[RESULT]: {:?}", edges);
        assert_eq!(edges.len(), 1);
        assert_eq!(edges.get(&lv2), Some(&lv1))
    }

    #[test]
    fn triangle() {
        let sg: UndirectedGraph = StableGraph::from_edges(&[(0, 1), (1, 2), (2, 0)]);

        let lg = MaximalPlanar::embed(sg);
        assert_eq!(lg.vertex_count(), 3);
        let lv0 = lg.vertex_by_id(0).unwrap();
        let lv1 = lg.vertex_by_id(1).unwrap();
        let lv2 = lg.vertex_by_id(2).unwrap();

        let edges = Span::compute(&lg, lv1.clone()).upwards;

        println!("[RESULT]: {:?}", edges);
        assert_eq!(edges.len(), 2);
        assert_eq!(edges.get(&lv2), Some(&lv1));
        assert_eq!(edges.get(&lv0), Some(&lv1));
    }

    #[test]
    fn quad() {
        let sg: UndirectedGraph =
            StableGraph::from_edges(&[(0, 1), (1, 2), (2, 3), (3, 0), (0, 2), (1, 3)]);

        let lg = MaximalPlanar::embed(sg);
        assert_eq!(lg.vertex_count(), 4);
        let lv0 = lg.vertex_by_id(0).unwrap();
        let lv1 = lg.vertex_by_id(1).unwrap();
        let lv2 = lg.vertex_by_id(2).unwrap();
        let lv3 = lg.vertex_by_id(3).unwrap();

        let edges = Span::compute(&lg, lv0.clone()).upwards;

        println!("[RESULT]: {:?}", edges);
        assert_eq!(edges.len(), 3);
        assert_eq!(edges.get(&lv2), Some(&lv0));
        assert_eq!(edges.get(&lv1), Some(&lv0));
        assert_eq!(edges.get(&lv3), Some(&lv0));
    }
}