1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
//! Implements the third phase of the algorithm.
//! In this phase, the reductions made in phase one are undone to obtain a complete planar embedding of the original graph.

use crate::data_structure::graph_dcel::GraphDCEL;
use crate::data_structure::link_graph::{LinkDart, LinkFace, LinkGraph, LinkVertex};
use crate::utils::convert::UndirectedGraph;
use petgraph::graph::NodeIndex;
use std::collections::HashMap;

use super::stack_item::StackItem;

pub struct Phase3<'a> {
    graph: UndirectedGraph,
    graph_copy: UndirectedGraph,
    stack: &'a mut Vec<StackItem>,
    dcel: &'a mut LinkGraph,
    node_id_mapper: HashMap<NodeIndex, LinkVertex>,
}

impl Phase3<'_> {
    pub fn new<'a>(
        graph: UndirectedGraph,
        graph_copy: UndirectedGraph,
        stack: &'a mut Vec<StackItem>,
        dcel: &'a mut LinkGraph,
    ) -> Phase3<'a> {
        let node_id_mapper = graph
            .node_indices()
            .zip(dcel.get_vertexes())
            .collect::<HashMap<NodeIndex, LinkVertex>>();

        Phase3 {
            graph,
            graph_copy,
            stack,
            dcel,
            node_id_mapper,
        }
    }

    pub fn execute(&mut self) {
        while let Some(entry) = self.stack.pop() {
            let k = entry.unwrap_degree();
            let (ec, hc) = match k {
                3 => (0, 3),
                4 => (1, 4),
                5 => (2, 5),
                degree => {
                    println!("unexpected degree {:?}", degree);
                    continue;
                }
            };
            let es = self.pop_edges(ec);
            let v = self.stack.pop().unwrap().unwrap_node();
            let new = self.get_or_create_vertex(v);
            let hs = self.pop_edges_to_vextex(hc, new.clone());
            let mut loop_dart: Option<LinkDart> = None;

            for e in es {
                let (a_node, b_node) = e;
                let vertex = self.node_id_mapper.get(&b_node).unwrap().clone();
                let vertex2 = self.node_id_mapper.get(&a_node).unwrap().clone();
                let dart = self.dcel.get_dart(&vertex, &vertex2);

                loop_dart = Some(self.dcel.next(&dart.clone().unwrap()));

                self.dcel.remove_edge(&vertex, dart.unwrap());
            }

            let mut dart = loop_dart.unwrap_or_else(|| self.get_dart_in_face(hs.clone()));
            let last_dart = self.dcel.prev(&dart.clone());
            let mut last_twin: Option<LinkDart> = None;
            let mut first_twin: Option<LinkDart> = None;

            while {
                let target = self.dcel.dart_target(&dart.clone());
                let source = self.dcel.dart_target(&self.dcel.twin(&dart.clone()));
                let next = self.dcel.next(&dart.clone());
                let is_last = last_dart == dart;
                let t1 = if is_last { first_twin.clone() } else { None };
                dart.change_face(None, None, None);

                let (d0, d1, f) =
                    self.create_face(target, new.clone(), source, dart.clone(), t1, last_twin);

                last_twin = Some(d0.clone());
                if first_twin.is_none() {
                    first_twin = Some(d1.clone());
                }

                dart.change_face(Some(f), Some(d1), Some(d0));
                dart = next;

                !is_last
            } {}
        }
    }

    fn pop_edges(&mut self, count: i32) -> Vec<(NodeIndex, NodeIndex)> {
        (0..count)
            .map(|_| self.stack.pop().unwrap().unwrap_edge())
            .collect::<Vec<_>>()
    }

    fn pop_edges_to_vextex(&mut self, count: i32, new: LinkVertex) -> Vec<LinkVertex> {
        self.pop_edges(count)
            .iter()
            .map(|e| -> LinkVertex {
                let (a_node, b_node) = e;
                self.get_outer_vertex(*a_node, *b_node, new.clone())
            })
            .collect::<Vec<LinkVertex>>()
    }

    fn get_or_create_vertex(&mut self, key: NodeIndex) -> LinkVertex {
        self.node_id_mapper
            .entry(key)
            .or_insert_with(|| self.dcel.new_vertex())
            .clone()
    }

    fn get_outer_vertex(
        &mut self,
        a_node: NodeIndex,
        b_node: NodeIndex,
        new: LinkVertex,
    ) -> LinkVertex {
        let a_vertex = self.get_or_create_vertex(a_node);
        let b_vertex = self.get_or_create_vertex(b_node);

        if a_vertex == new {
            return b_vertex;
        };

        a_vertex
    }

    fn get_dart_in_face(&self, hs: Vec<LinkVertex>) -> LinkDart {
        let dart = self.dcel.get_dart(&hs[0], &hs[1]).unwrap();
        let target = self.dcel.dart_target(&dart);
        let next_target = self.dcel.dart_target(&self.dcel.next(&dart));

        if hs.contains(&target) && hs.contains(&next_target) {
            return dart;
        }

        self.dcel.twin(&dart)
    }

    fn create_face(
        &mut self,
        v0: LinkVertex,
        v1: LinkVertex,
        v2: LinkVertex,
        d3: LinkDart,
        t1: Option<LinkDart>,
        t2: Option<LinkDart>,
    ) -> (LinkDart, LinkDart, LinkFace) {
        let d0 = self
            .dcel
            .new_dart(v0, v1.clone(), Some(d3.clone()), None, t1, None);
        let f0 = self.dcel.new_face(d0.clone());
        let d1 = self
            .dcel
            .new_dart(v1, v2, Some(d0.clone()), Some(d3), t2, Some(f0.clone()));

        (d0, d1, f0)
    }
}